Sturm’s Theorem with Endpoints
نویسندگان
چکیده
Sturm’s Theorem is a fundamental 19 century result relating the number of real roots of a polynomial f in an interval to the number of sign alternations in a sequence of polynomial division-like calculations. We provide a short direct proof of Sturm’s Theorem, including the numerically vexing case (ignored in many published accounts) where an interval endpoint is a root of f .
منابع مشابه
A Formally-Verified Decision Procedure for Univariate Polynomial Computation Based on Sturm’s Theorem
Sturm’s Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative, or nonpositive on any inp...
متن کاملSturm’s Theorem for Equations with Delayed Argument
Sturm’s type theorems on separation of zeros of solutions are proved for the second order linear differential equations with delayed argument.
متن کاملOn Comparison Theorems for Conformable Fractional Differential Equations
In this paper the more general comparison theorems for conformable fractional differential equations is proposed and tested. Thus we prove some inequalities for conformable integrals by using the generalization of Sturm’s separation and Sturm’s comparison theorems. The results presented here would provide generalizations of those given in earlier works. The numerical example is also presented t...
متن کاملThe Fundamental Theorem of Algebra Made Effective: An Elementary Real-Algebraic Proof via Sturm Chains
Sturm’s theorem (1829/35) provides an elegant algorithm to count and locate the real roots of any real polynomial. In his residue calculus (1831/37) Cauchy extended Sturm’s method to count and locate the complex roots of any complex polynomial. For holomorphic functions Cauchy’s index is based on contour integration, but in the special case of polynomials it can effectively be calculated via St...
متن کاملDegree of rational mappings, and the theorems of Sturm and Tarski
We provide an explicit algorithm of computing the mapping degree of a rational mapping from the real projective line to itself. As a corollary we prove Sturm’s theorem and a number of its generalizations. These generalizations are used to prove Tarski’s theorem about real semialgebraic sets. Similarly a version of Tarski’s theorem can be proved for an arbitrary algebraically closed field. Mathe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013